Any questions?

Proficiency AA 3 Inverses

Where you become able to find the inverse of a function thru algebra, graphs, and tables. You will be introduced to logarithms.

HW 6-7 to 6-15 HW 6-26 to 6-37 HW 6-44 to 6-53

```
Another word for "inverse" is "undo".

"Undo" the function f(x) = 3x - 6

or

Give the "inverse" of the function f(x) = 3x - 6.

or

Rewrite to solve for x

There are different methods.
```


Find $f^{-1}(x)$ f(x) = 3x - 6

6-4a

٦

$$h(x) = 2(x + 3)^3$$

64c

$g(x) = (2(3x+1)-5)^2$

$f(x) = 5(x+3)^2 - 2$

$$f(x) = \frac{2}{x-5}$$

$$m(x) = \frac{-3}{x+2} + 5$$

Numerically verifying

Find n⁻¹(x) and numerically verify

$$n(x) = (x+4)(x-4)$$

 $m(x) = (x+3)(x+3)$
 $p(x) = (x+1)(x+2)$

$f(x)=x^2+3x+2$

You may want to try these web sites out.

This one will find the inverse of a function:

https://www.symbolab.com/solver/function-inverse-calculator

Find the inverse + numerically verify

$$f(x) = 3(x+z)^{2} - 1$$

$$g(x) = \frac{1}{2}(x-s) + 4$$

$$h(x) = 3x^{2} + 12x + 11$$

$$f(x) = \frac{1}{5}(x - z) + 6$$

$$h(x) = \frac{2}{x - 3} + 2$$

$$j(x) = \frac{(x + 2)}{(x - 2)}$$

Graphing Inverses

$g(x) = 3(x + 2)^2 - 6$ $g^{-1}(x) =$

6-16

Is there a pattern?

Can you see an easier way to do this?

$h(x) = \frac{1}{6}x^3 - (13/6)x + 2$ $h^{-1}(x) =$

Hint: use your table and plot points!

6-16

6-22

Graph them both.

Give Domain and Range of both.

Are they functions?

Is there a way to make them functions?

How do you tell graphically if a relation is a function?

Is there a way to tell graphically if a relation's inverse is a function?

Can you name other functions whose inverses are not functions?

If a parent graph's inverse is a function will all graphs of that family be functions?

Find and sketch $g^{-1}(x)$

February 8, 2019

AA3 1 of 3 1a. Algebraically find an inverse 16 Numerically verify using ≥3 values. 2a Graphically find an inverse. 26 Numerically verify-using 23 points. 3. Find Domain & Kange 4. Test if f(x) and f'(x) are functions 5. Alter f(N) to make f'(X) a function. Abgebrairally verify f'(x) is inverse of f(x).

Algebraically prove these pairs of relations are inverses.

a.
$$f(x) = \frac{3}{5}x - 15$$

 $g(x) = \frac{5}{3}x + 25$
b. $f(x) = \frac{2(x+6)}{3} + 10$
 $g(x) = \frac{3}{2}x - 21$

c.
$$e(x) = \frac{(x-10)^2}{4}$$

 $d(x) = 4\sqrt{x} + 10$

Algebraically prove these pairs of relations are inverses.

$$f(x) = \frac{3}{5}x - 15$$
$$g(x) = \frac{5}{3}x + 25$$

Algebraically prove these pairs of relations are inverses.

$$f(x) = \frac{2(x+6)}{3} + 10$$
$$g(x) = \frac{3}{2}x - 21$$

Algebraically prove these pairs of relations are inverses. $(x-10)^2$

$$e(x) = \frac{(x-10)^2}{4}$$
$$d(x) = 4\sqrt{x} + 10$$

$$f(4) = \frac{\chi - 3}{2\chi + 4}$$

			6-38
Consider the table at right.		л	у
a.	Write an equation for the relationship represented in the table.	1 3	-5 7
b.	Make a table for the inverse.	5 7	19 31
c.	How are these two tables related to each other?		
d.	Use the relationship between the tables to find a shortcut for changing the equation of the original function into its inverse.		
e.	Now solve this new equation for y.		
f.	Justify that the equations are inverses of each other.		

Can you find the inverse of these functions:

linear, quadratic, square root, cubic, hyperbola (reciprocal)

Can you verify numerically?

Can you graph an inverse?

Can you test for a function?

Can you test if the inverse is a function?

Can you state domain and range?

Can you "fix" a function so that its inverse is a function?

February 8, 2019

